

Tetrahedron Letters 43 (2002) 1629-1631

TETRAHEDRON LETTERS

Calix[4]arene-bis(dibenzocrown-6-ethers) with one proton-ionizable group

Vladimir S. Talanov,* Galina G. Talanova, Maryna G. Gorbunova and Richard A. Bartsch*

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA Received 8 November 2001; revised 9 January 2002; accepted 11 January 2002

Abstract—Two 1,3-alternate calix[4]arene-biscrowns with one proton-ionizable group and two dibenzocrown-6-ether units are synthesized. The compounds exhibit high Cs⁺ extraction efficiency and selectivity. Cs⁺/Na⁺ and Cs⁺/K⁺ selectivities for the new N-(trifluoromethylsulfonyl)carbamoyl-substituted calix[4]arene-bis(dibenzocrown-6) are found to be higher than those for an analog with no benzo group substituents in the crown ether units. © 2002 Elsevier Science Ltd. All rights reserved.

Intense studies of 1,3-alternate calix[4]arene-crown-6ethers have been stimulated by the need to develop selective extractants for Cs⁺ separation from radioactive liquid nuclear waste.^{1,2} Although these compounds exhibit high Cs⁺/Na⁺ selectivities in solvent extraction and liquid membrane transport,^{3–5} implementation of the ligands in practical separation processes is hampered by low extraction efficiency of their cesium salt complexes into organic solvents of low polarity.^{6–8}

Recently we reported⁹ the synthesis of novel 1,3-alternate calix[4]arene-bis(crown-6-ethers) **2** and **3** with a proton-ionizable group positioned in front of one crown ether unit. The ligands possessed markedly enhanced Cs⁺ extraction efficiency compared to analog **1** without a proton-ionizable group. The Cs⁺/Na⁺ selectivities of these ligands were found to be at the same level as that of the non-ionizable analog **1**.

* Corresponding authors. Tel.: +1(806) 742 3054; fax: +1(806) 742 1289 (V.S.T.); tel.: +1(806) 742 3069; fax: +1(806) 742 1289 (R.A.B.); e-mail: vlad.talanov@ttu.edu; richard.bartsch@ttu.edu

1,3-Alternate calix[4]arene-bis(crown-6-ethers) with one or more aromatic group incorporated into the polyether chains are reported to exhibit higher Cs^+/Na^+ selectivity compared to analogs with glycolic polyether chains.^{3,5,10,11} Therefore, we undertook the synthesis and evaluation of analogs of **2** and **3** in which two ethylene bridges in each polyether unit have been replaced by two *o*-phenylene groups.

Synthesis of the new proton-ionizable calixbiscrowns 6 and 7 was performed as shown in Scheme 1. First, bromocalix[4]arene-bis(dibenzocrown-6-ether) 5 was prepared from bromocalix[4]arene¹² by reaction with ditosylate 4^{11} and Cs₂CO₃ in acetonitrile.¹³ The 1,3alternate conformation of the calix[4]arene moiety in 5 was verified by NMR spectroscopy. Thus, singlets at 3.72 and 3.74 ppm and two signals at 37.6 and 38.0 ppm were observed in the ¹H and ¹³C NMR spectra, respectively, for the Ar- CH_2 -Ar methylene groups of 5. A carboxylic acid group was introduced into the calixbiscrown unit by treatment of 5 with BuLi and then with CO_2 giving rise to 6. The presence of carboxylic group in 6 was verified by its IR and ¹³C NMR spectra.¹⁴ The N-(trifluoromethylsulfonyl)carbamoylsubstituted ligand 7^{15} was prepared by conversion of carboxylic acid 6 into the corresponding acid chloride followed by reaction with trifluoromethanesulfonamide and NaH.

The alkali metal cation (AMC) binding propensities of the new proton-ionizable calixbiscrowns **6** and **7** were evaluated by competitive extractions of Li⁺, Na⁺, K⁺, Rb⁺ and Cs⁺ from aqueous nitrate/hydroxide solutions (0.10 mM in each AMC, pH 9.8) into 0.10 mM solutions of the ligands in chloroform.¹⁶ As evident from

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00096-5

Scheme 1. (a) Cs_2CO_3 , MeCN, reflux, 6 days; (b) (i) BuLi, THF, -75°C, 10 min; (ii) CO_2 , THF, -75°C, 15 min; (c) (i) $(COCl)_2$, C_6H_6 , 70°C, 5 h; (ii) $CF_3SO_2NH_2$, NaH, THF, rt, 12 h.

the results presented in Fig. 1, both of the calixbiscrowns exhibit preferential Cs^+ binding. The *N*-(trifluoromethylsulfonyl)carboxamide 7 is a significantly more efficient AMC extractant than the carboxylic acid **6**. The extraction efficiency for calixbiscrown 7 is found to be close to that of the earlier reported analog **3**.

For practical application in nuclear waste treatment, the ability of the ligand to separate Cs^+ from aqueous

Figure 1. Competitive extractions of AMC from 0.10 mM (in each) aqueous nitrate solutions (pH 9.8) into chloroform with 0.10 mM calixbiscrowns **6** and **7**.

solutions containing large excesses of Na⁺ and K⁺ is very important. To compare the Cs⁺ selectivity of 7 with that of analog 3, which has no benzo groups in the crown ether moieties, competitive extraction of 0.10 mM Cs⁺, 0.10 M K⁺, and 1.0 M Na⁺ aqueous nitrate solutions at pH 6.5 with 0.10 mM calixbiscrowns in chloroform was performed. The distribution coefficients, *D*, and their ratios presented in Table 1 show that ligand 7 with the dibenzocrown-6 units exhibits higher Cs⁺/Na⁺ and Cs⁺/K⁺ selectivities than ligand 3.

In conclusion, new proton-ionizable 1,3-alternate calix[4]arene-bis(dibenzocrown-6-ethers) **6** and **7** are found to exhibit high Cs^+ extraction efficiency and selectivity. The *N*-(trifluoromethylsulfonyl)carbamoyl-substituted calix[4]arene-bis(dibenzocrown-6-ether) **7** exhibits higher Cs^+/Na^+ and Cs^+/K^+ selectivities than the analogous proton-ionizable calixbiscrown **3** with no benzo groups in the crown ether units.

Acknowledgements

This research was supported by the Division of Chemical Sciences, Biosciences and Geosciences of the Office of Basic Energy Sciences of the US Department of Energy (Grant DE-FG03-94ER14416).

Table 1. Competitive extraction of 0.10 mM Cs⁺, 0.10 M K⁺, and 1.0 M Na⁺ aqueous nitrate solutions (pH 6.5) with 0.10 mM calixbiscrowns in $CHCl_3$

Calixbiscrown	$D_{\rm Cs}$	$D_{ m Na}$	$D_{\rm K}$	$D_{\rm Cs}/D_{\rm Na}$	$D_{\rm Cs}/D_{\rm K}$
37	0.14 0.28	$\begin{array}{c} 5.0 \times 10^{-5} \\ 4.0 \times 10^{-5} \end{array}$	$5.6 \times 10^{-4} \\ 6.3 \times 10^{-4}$	2.8×10^{3} 7.0×10^{3}	250 440

References

- Arnaud-Neu, F.; Schwing-Weill, M.-J.; Dozol, J.-F. In *Calixarenes 2001*; Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht, 2001; pp. 642–662.
- Thuery, P.; Nierlich, M.; Lamare, V.; Dozol, J.-F.; Asfari, Z.; Vicens, J. J. Inclusion Phenom. Macrocycl. Chem. 2000, 36, 375–408.
- Hill, C.; Dozol, J.-F.; Lamare, V.; Rouquette, H.; Eymard, S.; Tournois, B.; Vicens, J.; Asfari, A.; Bressot, C.; Ungaro, R.; Casnati, A. J. Inclusion Phenom. Mol. Recogn. Chem. 1994, 19, 399–408.
- Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzolli, F.; Arnaud, F.; Fanni, S.; Schwing, M.-J.; Egberink, R. J. M.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 2767–2777.
- Asfari, Z.; Bressot, C.; Vicens, J.; Hill, C.; Dozol, J.-F.; Rouquette, H.; Eymard, S.; Lamare, V.; Tournois, B. *Anal. Chem.* **1995**, *67*, 3133–3139.
- Haverlock, T. J.; Bonnesen, P. V.; Sachleben, R. A.; Moyer, B. A. *Radiochim. Acta* 1997, 76, 103–108.
- Haverlock, T. J.; Bonnesen, P. V.; Sachleben, R. A.; Moyer, B. A. J. Inclusion Phenom. Macrocycl. Chem. 2000, 36, 21–37.
- Bonnesen, P. V.; Haverlock, T. J.; Engle, N. L.; Sachleben, R. A.; Moyer, B. A. In *Calixarenes for Separations*, *ACS Symposium Series*, 757; Lumetta, G. J.; Rogers, R. D.; Gopalan, A. S., Eds.; American Chemical Society: Washington, 2000; pp. 26–44.
- Talanov, V. S.; Talanova, G. G.; Bartsch, R. A. Tetrahedron Lett. 2000, 41, 8221–8224.
- Kim, J. S.; Suh, I. H.; Kim, J. K.; Cho, M. H. J. Chem. Soc., Perkin Trans. 1 1998, 2307–2311.
- Lamare, V.; Dozol, J.-F.; Fuangswasdi, S.; Arnaud-Neu, F.; Thuery, P.; Nierlich, M.; Asfari, Z.; Vicens, J. J. Chem. Soc., Perkin Trans. 2 1999, 271–284.
- Casnati, A.; Fochi, M.; Minari, P.; Pochini, A.; Reggiani, M.; Ungaro, R.; Reinhoudt, D. N. *Gazz. Chim. Ital.* 1996, *126*, 99–106.
- 13. Preparation of 5. A mixture of bromocalix[4]arene (2.45 g, 4.56 mmol), Cs₂CO₃ (3.72 g, 11.4 mmol), ditosylate 4 (2.93 g, 4.56 mmol) and acetonitrile (200 mL) was refluxed under nitrogen for 3 days. The same quantities of Cs₂CO₃ and ditosylate 4 were added again and refluxing was continued for another 3 days. The solvent was evaporated in vacuo and CH₂Cl₂ and 10% aqueous HCl (to pH<1) were added to the residue. The organic layer was washed with water, dried (MgSO₄) and evaporated in vacuo. Chromatography of the residue on silica gel with ethyl acetate-hexanes (1:4) as eluent gave 5 as a white solid. Yield 3.25 g (65%), mp 163-165°C; ¹H NMR (499.7 MHz, CDCl₃, 23°C): δ 3.28 (t, J=6.9, 2H), 3.46 (s, 4H), 3.50-3.64 (m, 10H), 3.72 s+3.74 s (8H), 4.37 s+4.24-4.46 m (8H), 6.47–6.52 (m, 1H), 6.55–6.62 (m, 4H), 6.68–6.75 (m, 4H), 6.88–7.13 (m, 13H); ¹³C NMR (125.7 MHz,

CDCl₃): δ (selected) 37.6 (ArCH₂Ar), 38.0 (ArCH₂Ar). Anal. calcd for C₆₄H₅₉BrO₁₂: C, 69.88; H, 5.41; Br, 7.26. Found: C, 69.49; H, 5.25; Br, 7.03%.

- 14. Preparation of 6. To a solution of 5 (1.85 g, 1.68 mmol) in THF (30 mL), BuLi (5.05 mmol) in hexanes was added at -75°C with stirring under nitrogen. After 10 min at -75°C, CO₂ was bubbled through the solution for 10 min. After another 15 min at -75°C, the mixture was allowed to warm to ambient temperature. The solvents were evaporated in vacuo and CH₂Cl₂ was added to the residue. The organic layer was washed with aqueous Na_2CO_3 , dried (Na_2SO_4) and evaporated in vacuo. The residue was chromatographed on silica gel with CH₂Cl₂-MeOH (96:4) as eluent. The resultant solid was dissolved in CH₂Cl₂. The solution was washed with 10% aqueous HCl and water, dried (MgSO₄) and evaporated in vacuo to give 6 as a white solid. Yield 1.20 g (67%), mp 151-153°C; IR (deposit from CH₂Cl₂ solution on a NaCl plate, cm^{-1}): v 1710 (C=O); ¹H NMR (499.7 MHz, CDCl₃, 23°C): δ 3.37 (t, J=6.6, 2H), 3.42–3.63 (m, 6H), 3.72 (d+d, J=17.5, 4H, ArCH₂Ar), 3.83 (d, J=16.2, 2H, $ArCH_2Ar$), 3.92 (d, J=16.2, 2H, $ArCH_2Ar$), 4.20 (m, 4H), 4.38 (s, 4H), 6.48-6.53 (m, 1H), 6.57-6.64 (m, 4H), 6.72 (d, J=6.8, 2H), 6.77 (d, J=6.3, 2H), 6.85-7.07 (m, 14H), 7.08-7.14 (m, 2H), 7.73 (s, 2H); ¹³C NMR (125.7 MHz, CDCl₃): δ (selected) 37.9 (ArCH₂Ar), 38.0 $(ArCH_2Ar)$, 170.6 (CO_2H) . Anal. calcd for $C_{65}H_{60}O_{14}$: C, 73.49; H, 5.68. Found: C, 73.46; H, 5.71%.
- 15. Preparation of 7. A solution of 6 (0.55 g, 0.52 mmol) and oxalyl chloride (0.20 g, 1.55 mmol) in C_6H_6 (20 mL) was stirred under nitrogen at 70°C for 5 h and the solvent was removed in vacuo. A solution of the residue in THF was added to a mixture of a trifluoromethanesulfonamide (0.15 g, 1.03 mmol) and NaH (0.08 g, 3.3 mmol) in THF. The mixture was stirred under nitrogen at room temperature for 12 h. Then 0.5 mL of H₂O was added and the THF was evaporated in vacuo. The residue was dissolved in CH₂Cl₂ and the resulting solution was washed with aqueous Na₂CO₃, dried (Na₂SO₄) and evaporated in vacuo. The residue was washed with Et₂O, and then dissolved in CH₂Cl₂. The solution was washed with 10% aqueous HCl and water, dried (MgSO₄) and evaporated in vacuo to give 7 as off-white solid. Yield 0.56 g (90%), mp 137–139°C; ¹H NMR (499.7 MHz, CDCl₃, 23°C): δ 3.30-3.44 (m, 4H), 3.46-3.67 (m, 12H), 3.72 (d, J=16.3, 2H, ArC H_2 Ar), 3.79 (d, J = 16.3, 2H, ArC H_2 Ar), 3.83 (d, $J = 16.7, 2H, ArCH_2Ar$, 3.87 (d, $J = 16.7, 2H, ArCH_2Ar$), 4.22-4.29 (m, 2H), 4.31-4.40 (m)+4.38 (s) (4H), 6.61-6.68 (m, 3H), 6.74-6.82 (m, 6H), 6.88-6.99 (m, 8H), 7.02-7.13 (m, 8H), 7.45 (s, 2H); 13 C NMR (125.7 MHz, CDCl₃): δ (selected) 37.8 (ArCH₂Ar), 37.9 (ArCH₂Ar), 165.1 (CONH). Anal. calcd for C₆₆H₆₀F₃NO₁₅S: C, 66.27; H, 5.06; N, 1.17. Found: C, 66.54; H, 5.17; N, 1.17%.
- 16. After extraction, the organic phase was stripped with aqueous 0.1N HCl and the AMC concentrations in the strippant were determined by ion chromatography.